首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1749篇
  免费   73篇
  国内免费   200篇
化学   1231篇
晶体学   8篇
力学   19篇
综合类   1篇
数学   25篇
物理学   738篇
  2023年   134篇
  2022年   18篇
  2021年   28篇
  2020年   42篇
  2019年   37篇
  2018年   37篇
  2017年   36篇
  2016年   41篇
  2015年   27篇
  2014年   40篇
  2013年   115篇
  2012年   78篇
  2011年   82篇
  2010年   46篇
  2009年   89篇
  2008年   107篇
  2007年   120篇
  2006年   117篇
  2005年   86篇
  2004年   78篇
  2003年   71篇
  2002年   76篇
  2001年   65篇
  2000年   81篇
  1999年   54篇
  1998年   61篇
  1997年   23篇
  1996年   25篇
  1995年   31篇
  1994年   23篇
  1993年   23篇
  1992年   9篇
  1991年   17篇
  1990年   11篇
  1989年   8篇
  1988年   9篇
  1987年   4篇
  1986年   3篇
  1985年   7篇
  1984年   5篇
  1982年   4篇
  1981年   9篇
  1980年   7篇
  1979年   7篇
  1978年   3篇
  1977年   4篇
  1976年   6篇
  1975年   4篇
  1974年   4篇
  1973年   6篇
排序方式: 共有2022条查询结果,搜索用时 156 毫秒
1.
We have developed a new database of structures and bond energies of 59 noble-gas-containing molecules. The structures were calculated by CCSD(T)/aug-cc-pVTZ methods and the bond energies were obtained using the CCSD(T)/complete basis set method. Many wavefunction-based and density functional theory methods have been benchmarked against the 59 accurate bond energies. Our results show that the MPW1B95, B2GP-PLYP, and DSD-BLYP functionals with the aug-cc-pVTZ basis set excel in predicting the bond energies of noble-gas molecules with mean unsigned errors (MUEs) of 2.0 to 2.1 kcal/mol. When combinations of Dunning's basis sets are used, the MPW1B95, B2GP-PLYP, DSD-BLYP, and BMK functionals give significantly lower MUEs of 1.6 to 1.9 kcal/mol. Doubly hybrid methods using B2GP-PLYP and DSD-BLYP functionals and MP2 calculation also provide satisfactory accuracy with MUEs of 1.4 to 1.5 kcal/mol. If the Ng bond energies and the total atomization energies of a group of 109 main-group molecules are considered at the same time, the MPW1B95/aug-cc-pVTZ single-level method (MUE = 2.7 kcal/mol) and the B2GP-PLYP and DSD-PLYP functionals with combinations of basis sets or using the doubly hybrid method (MUEs = 1.9-2.2 kcal/mol) give the overall best result.  相似文献   
2.
Doxorubicin (DOX), a recognized anticancer drug, forms stable associations with carbon nanotubes (CNTs). CNTs when properly functionalized have the ability to anchor directly in cancerous tumors where the release of the drug occurs thanks to the tumor slightly acidic pH. Herein, we study the armchair and zigzag CNTs with Stone–Wales (SW) defects to rank their ability to encapsulate DOX by determining the DOX-CNT binding free energies using the MM/PBSA and MM/GBSA methods implemented in AMBER16. We investigate also the chiral CNTs with haeckelite defects. Each haeckelite defect consists of a pair of square and octagonal rings. The armchair and zigzag CNT with SW defects and chiral nanotubes with haeckelite defects predict DOX-CNT interactions that depend on the length of the nanotube, the number of present defects and nitrogen doping. Chiral nanotubes having two haeckelite defects reveal a clear dependence on the nitrogen content with DOX-CNT interaction forces decreasing in the order 0N > 4N > 8N. These results contribute to a further understanding of drug-nanotube interactions and to the design of new drug delivery systems based on CNTs.  相似文献   
3.
4.
A new approach to investigate potential screening at the interface of ionic liquids (ILs) and charged electrodes in a two-electrode electrochemical cell by in situ X-ray photoelectron spectroscopy has been introduced. Using identical electrodes, we deduce the potential screening at the working and the counter electrodes as a function of applied voltage from the potential change of the bulk IL, as derived from corresponding core level binding energy shifts for different IL/electrode combinations. For imidazolium-based ILs and Pt electrodes, we find a significantly larger potential screening at the anode than at the cathode, which we attribute to strong attractive interactions between the imidazolium cation and Pt. In the absence of specific ion/electrode interactions, asymmetric potential screening only occurs for ILs with different cation and anion sizes as demonstrated for an imidazolium chloride IL and Au electrodes, which we assign to the different thicknesses of the electrical double layers. Our results imply that potential screening in ILs is mainly established by a single layer of counterions at the electrode.  相似文献   
5.
《中国物理 B》2021,30(5):56111-056111
Concentrated solid-solution alloys(CSAs) have demonstrated promising irradiation resistance depending on their compositions. Under irradiation, various defects can be produced. One of the most important parameters characterizing the defect production and the resulting defect number is the threshold displacement energies(E_d). In this work, we report the results of E_dvalues in a series of Ni–Fe–Cr concentrated solid solution alloys through molecular dynamics(MD)simulations. Based on several different empirical potentials, we show that the differences in the E_dvalues and its angular dependence are mainly due to the stiffness of the potential in the intermediate regime. The influences of different alloying elements and temperatures on E_dvalues in different CSAs are further evaluated by calculating the defect production probabilities. Our results suggest a limited influence of alloying elements and temperature on E_dvalues in concentrated alloys. Finally, we discuss the relationship between the primary damage and E_dvalues in different alloys. Overall, this work presents a thorough study on the E_dvalues in concentrated alloys, including the influence of empirical potentials,their angular dependence, temperature dependence, and effects on primary defect production.  相似文献   
6.
The threat of phenol contamination in aquatic ecosystems is significant for the health of the earth's water systems as well as all humans on it. The present study was conducted to synthesize a cost-effective adsorbent (pea shells activated with sulfuric acid, PSASA) from agriculture waste (pea shells) and its use for effective removal of toxic 4-Aminophenol (4-AP). Newly designed PSASA exhibited significant adsorption of 4-AP which was confirmed by SEM, FT-IR, and XRD analysis. Surface topography confirmed high unevenness of the PSASA surface and the macroporous feature of the PSASA was confirmed by BET analysis. . Multiple testing was done to see how various factors affected adsorption such as adsorbent dose, temperature, pH, PZC, the effect of KCl and urea addition and the effect of the initial concentration of 4-AP. A drop in adsorption uptake of 4-AP was observed as the temperature increases from 25 °C to 45 °C. Maximum adsorption uptake (qm) was found to be 106.11 mg/g at an optimum pH of 7.0 and 25 °C. Among various adsorption isotherm models tested, Langmuir Isotherm gave the best explanation with high R2 values of experimental data. The pseudo-first-order model was found to explain the kinetics of adsorption well. The thermodynamic finding confirms the adsorption process was physical and exothermic. The adsorption of 4-AP was primarily governed by electrostatic interaction, hydrogen-bonding and π-π exchange mechanism. Because of the positive outcomes of the present research, we can use the PSASA as a cost-effective adsorbent for removing phenolic compounds.  相似文献   
7.
Facile access to dimeric heavier aluminum chalcogenides [(NHC)Al(Tipp)-μ-Ch]2 (NHC=IiPr (1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene, IMe4 (1,3,4,5-tetramethylimidazol-2-ylidene); Tipp=2,4,6-iPr3C6H2; Ch=Se, Te) by treatment of NHC-stabilized aluminum dihydrides with elemental Se and Te is reported. The higher affinity of IMe4 in comparison with IiPr toward the Al center in [(NHC)Al(Tipp)-μ-Ch]2 can be used for ligand exchange. Additionally, the presence of excess IMe4 allows for cleavage of the dimers to form a rare example of a neutral multiply bonded heavier aluminum chalcogenide in the form of a tetracoordinate aluminum complex, (IMe4)2(Tipp)Al=Te. This species reacts with three equivalents of CO2 across two Al−CNHC and the Al=Te bond affording a pentacoordinate aluminum complex containing a dianionic tellurocarbonate ligand [CO2Te]2−, which is the first example of tellurium analogue of a carbonate [CO3]2−.  相似文献   
8.
We report herein the design and development of Co/Al and Co/Mg bimetallic catalysts, supported by a phosphine/secondary phosphine oxide (PSPO) bifunctional ligand, for the site-selective C−H alkenylation of nitrogen-containing heteroarenes with alkynes. These catalysts enable the alkenylation of pyridine, pyridone, and imidazo[1,2-a]pyridine derivatives at the C−H site proximal to the Lewis basic nitrogen or oxygen atom, which represents a selectivity profile distinct from that of the previously developed cobalt-diphosphine/aluminum catalyst. The alkenylated products were obtained in moderate to good yields using various heterocycles and differently substituted internal alkynes. Kinetic isotope effect experiments suggest the irreversibility of the C−H activation step, the relevance of which to the rate-limiting step depends on the reaction conditions. Density functional theory calculations indicate that ligand-to-ligand hydrogen transfer is the common mechanism of C−H activation.  相似文献   
9.
The reaction of the oxygen-bridged frustrated Lewis pairs (FLPs) tBu2P−O−Si(C2F5)3 ( 1 ) and tBu2P−O−AlBis2 ( 2 ) with azobenzene, promoted by UV irradiation, led to a selective complexation of the cis-isomer. The addition product of 2 is stable, while the adduct of 1 isomerizes in solution in an ortho-benzidine-like [3,3]-rearrangement by cleavage of the N−N bond, saturation of the nitrogen atoms with hydrogen atoms and formation of a new bond between two phenyl ortho-carbon atoms. Similar rearrangements take place with different para-substituted azobenzenes (R=Me, OMe, Cl) and di(2-naphthyl)diazene, while ortho-methylated azo compounds do not form adducts with 1 . All adducts were characterized by multinuclear NMR spectroscopy and elemental analyses and the mechanism of the rearrangement was explored by quantum-chemical calculations.  相似文献   
10.
Triazoles are an important class of compounds with widespread applications. Functionalization of the triazole backbone is thus of significant interest. In comparison to 1,2,3-triazoles, C−H activation-functionalization of the congeners 1,2,4-triazoles is surprisingly underdeveloped. Indeed, no such C−H activation-functionalization has been reported for 4-substituted 1,2,4-triazole cores. Furthermore, although denitrogenative ring-opening of 1,2,3-triazoles is well-explored, 1,2,4-triazole/triazolium substrates have not been known to exhibit N−N bond-cleaving ring-opening reactivity so far. In this work, we unveiled an unusual hidden reactivity of the 1,2,4-triazole backbone involving the elusive N−N bond-cleaving ring-opening reaction. This new reactivity was induced by a Satoh-Miura-type C−H activation-annulation at the 1,2,4-triazole motif appended with a pyridine directing group. This unique reaction allowed ready access to a novel class of unsymmetrically substituted 2,2′-dipyridylamines, with one pyridine ring fully-substituted with alkyl groups. The unsymmetrical 2,2′-dipyridylamines were utilized to access unsymmetrical boron-aza-dipyridylmethene fluorescent dyes. Empowered with desirable optical/physical properties such as large Stokes shifts and suitable hydrophobicity arising from optimal alkyl chain length at the fully-substituted pyridine-ring, these dyes were used for intracellular lipid droplet-selective imaging studies, which provided useful information toward designing suitable lipid droplet-selective imaging probes for biomedical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号